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INTRODUCTION 

Database Management Systems (DBMSs) require an administrator, whose principal tasks are 

data management, both at the logical and physical levels, as well as performance 

optimization. With the wide development of databases and data warehouses, minimizing the 

administration function is crucial. This function includes the selection of suitable physical 

structures to improve system performance. 

View materialization and indexing are presumably some of the most effective optimization 

techniques adopted in relational implementations of data warehouses. Materialized views are 

physical structures that improve data access time by precomputing intermediary results. 

Therefore, end-user queries can be efficiently processed through data stored in views and do 

not need to access the original data. Indexes are also physical structures that allow direct data 

access. They avoid sequential scans and thereby reduce query response time. Nevertheless, 

these solutions require additional storage space and entail maintenance overhead. The issue is 

then to select an appropriate configuration of materialized views and indexes that minimizes 

both query response time and maintenance cost, given a limited storage space. This problem 

is NP-hard (Gupta & Mumick, 2005). 

The aim of this article is to present an overview of the major families of state-of-the-art index 

and materialized view selection methods; and to discuss the issues and future trends in data 

warehouse performance optimization. We particularly focus on data mining-based heuristics 

we developed to reduce the selection problem complexity and target the most pertinent 

candidate indexes and materialized views. 

BACKGROUND 

Today's commercial relational DBMSs provide integrated tools for automatic physical design. 

For a given workload, they automatically recommend configurations of indexes and 

materialized views (Dageville et al., 2004), coupled with data partitioning (Agrawal et al., 



2004) or table clustering (Zilio et al., 2004). However, these tools depend on the query 

optimizer and therefore the host DBMS, which renders their adaptation onto other systems 

intricate. In the remainder of this section, we detail published research about index and 

materialized view selection. 

Index selection problem 

The index selection problem has been studied for many years in databases (Finkelstein et al., 

1988; Chaudhuri et al., 2004), but adaptations to data warehouses are few. In this particular 

context, research studies may be clustered into two families: algorithms that optimize 

maintenance cost (Labio et al., 1997) and algorithms that optimize query response time. In 

both cases, optimization is realized under the storage space constraint. We particularly focus 

on the second family of approaches, which may be classified depending on how the set of 

candidate indexes and the final configuration of indexes are built. 

The set of candidate indexes may be built manually by the administrator, according to his 

expertise of the workload (Frank et al., 1992; Choenni et al., 1993a; Choenni et al. 1993b). 

This is both subjective and quite hard to achieve when the number of queries is large. In 

opposition, candidate indexes may also be extracted automatically through a syntactic 

analysis of the workload (Chaudhuri & Narasayya, 1997; Valentin et al., 2000; Golfarelli et 

al., 2002).  

There are several methods for building the final index configuration from the candidate 

indexes. Ascending methods start from an empty set of indexes (Kyu-Young, 1987; Frank et 

al., 1992; Choenni et al., 1993b; Chaudhuri & Narasayya, 1997). They increasingly select 

indexes minimizing workload cost until it does not decrease anymore. Descending methods 

start with the whole set of candidate indexes and prune indexes until workload cost increases 

(Kyu-Young, 1987; Choenni et al., 1993a). Classical optimization algorithms have also been 

used to solve this problem, such as knapsack resolution (Ip et al., 1983; Gündem, 1999; 



Valentin et al., 2000; Feldman & Reouven, 2003) and genetic algorithms (Kratika et al., 

2003). 

Materialized view selection problem 

The classical papers about materialized view selection in data warehouses introduce a lattice 

framework that models and captures ancestor/descendent dependency among aggregate views 

in a multidimensional context (Harinarayan et al., 1996; Baralis et al., 1997; Kotidis & 

Roussopoulos, 1999; Uchiyama et al., 1999). This lattice is greedily browsed with the help of 

cost models to select the best views to materialize. This problem has first been addressed in 

one data cube, and then extended to multiple cubes (Shukla et al., 2000). Another theoretical 

framework, called the AND-OR view graph, may also be used to capture the relationships 

between materialized views (Chan et al., 1999; Theodoratos et al., 2000; Valluri et al., 2002; 

Gupta & Mumick, 2005). However, the majority of these solutions are theoretical and not 

truly scalable. 

Another method decomposes data cubes into an indexed hierarchy of wavelet view elements 

and selects those that minimize the average processing cost of the queries defined on the data 

cubes (Smith et al., 2004). Similarly, the Dwarf structure (Sismanis et al., 2002) compresses 

data cubes, thereby suppressing redundancy to improve maintenance and interrogation costs. 

These approaches are very interesting, but they mainly focus on computing efficient data 

cubes by changing their physical design, which is not always convenient in practice. 

Yet other approaches detect common subexpressions within workload queries that correspond 

to intermediary results that are suitable to materialize (Baril & Bellahsene, 2003; Goldstein & 

Larson, 2003). However, browsing is very costly and these methods are not truly scalable 

with respect to the number of queries. 

Finally, the most recent approaches are workload-driven. They syntactically analyze the 

workload to enumerate relevant candidate views (Agrawal et al., 2001). By calling the system 



query optimizer, they greedily build a configuration of the most pertinent views. A real 

workload is indeed considered as a good starting point to predict future queries. 

Coupling index and materialized view selection 

A few research studies deal with the simultaneous selection of indexes and materialized 

views. Agrawal et al. (2001) proposed three alternative approaches. The first, MVFIRST, 

selects materialized views first and then indexes. The second, INDFIRST, selects indexes first 

and then materialized views. The third, joint enumeration, is claimed by the authors to be the 

most efficient for workload execution time optimization. It processes indexes, materialized 

views and indexes over these views simultaneously. 

Bellatreche et al. (2000) studied the problem of storage space distribution among materialized 

views and indexes. A set of views and indexes are selected as an initial solution. Then, this 

solution is iteratively modified to reduce the execution cost, by redistributing storage space 

among indexes and materialized views.  

Finally, Rizzi & Saltarelli (2003) a priori determine a trade-off between the storage spaces 

allotted to indexes and materialized views, depending on how queries are defined. Their idea 

is that view materialization provides the best benefit for queries involving coarse granularity 

aggregations, while indexing provides the best benefit with queries containing attributes with 

a high selectivity. 

DATA MINING-BASED INDEX AND MATERIALIZED VIEW SELECTION 

Strategy overview 

We advocate for index and materialized view selection strategies that bear the following 

features: 

 automatic: the final configuration of indexes and views should be built automatically; 

 generic: the selection strategy should not be dependent on a particular DBMS; 

 modular: the selection strategy should be composed of independent modules; 



 scalable: the strategy must be able to handle large workloads. 

To achieve this goal, we designed a new strategy (Aouiche et al., 2005; Aouiche et al., 2006) 

that is composed of several modules: a syntactical query analyzer, a data miner, cost models, 

and an index and materialized view selector (Figure 1). The query analyzer syntactically 

processes the input workload to extract the most pertinent attributes for indexing and view 

materialization. It also exploits some knowledge about performance administrative tasks, 

formalized as if-then rules. For instance, common rules imply the selection of attributes from 

the “Where” and “Group by” clauses in SQL statements. The output of this process is a so-

called “query-attribute” binary matrix whose lines are the analyzed queries and whose 

columns are the extracted attributes. The general term of this matrix is set to 1 if an extracted 

attribute is present in the corresponding query and to 0 otherwise. 

The query-attribute matrix constitutes the extraction context for the data miner. This module 

builds a configuration of candidate indexes and materialized views. It may exploit any data 

mining technique, suiting the data structure to select (indexes or materialized views). For 

instance, our materialized view selection strategy exploits clustering for building sets of 

similar queries. The idea of exploiting clustering is motivated by the fact that several queries 

having a similar syntax may likely be resolved from one materialized view. Hence, workload 

queries are grouped into clusters that are exploited to build the set of candidate views. 

Furthermore, these candidate views are merged to resolve multiple queries. 



 

Figure 1: Materialized view and index selection system 

Our index selection strategy exploits another data mining technique, frequent itemset mining, 

to determine the candidate indexes. Our intuition here is that index utility is strongly 

correlated to the usage frequency of the corresponding attributes within a given workload, 

which frequent itemset mining is good at highlighting. Each itemset is analyzed to generate a 

set of candidate indexes, with the help of metadata (schema: primary keys, foreign keys; 

statistics, etc.). This process for building candidate indexes may also be applied on the 

candidate materialized views, since they are actually tables. Hence, we can build indexes on 

materialized views to maximize performance improvements. 

Finally, the cost model module takes as input the data warehouse metadata, the workload and 

candidate indexes and materialized views. It computes the cost, in terms of access and storage 

cost, of each query in the presence of the candidate indexes and/or views. Since the number of 

candidates is generally as high as the input workload is large, it is not feasible to materialize 



them all because of storage space constraints. Hence, our cost models are exploited by the 

index and view selector to greedily build a final configuration of indexes and materialized 

views. When simultaneously selecting indexes and materialized views, we exploit specific 

cost models that allow taking into account the interactions between indexes and materialized 

views and efficiently sharing storage space. 

Discussion 

Thanks to its modularity, we have been able to apply our strategy in several cases. For 

instance, we performed B-tree index selection in a database context as well as bitmap join 

index selection in a data warehouse. In addition, modularity helps in gradually improving our 

strategy. A given module may indeed be easily replaced by another, more efficient one. For 

example, it is easy to replace our cost models by more accurate ones, or a data mining 

algorithm by a more efficient or scalable one. 

In opposition to other approaches, particularly those of DBMS vendors, we aimed at 

remaining as generic and independent from the host DBMS as possible. Our analyzer module 

indeed processes standard SQL queries, for instance. Our cost models are also mathematical 

so that they do not depend on a query optimizer. Hence, our strategy may be instantiated 

within different systems. 

Finally, our approach takes into account knowledge (metadata, usage statistics; knowledge 

extracted from the query workload, the way attributes are queried, etc.) that helps in reducing 

the selection problem complexity and thus targeting the most pertinent candidate indexes and 

materialized views. Since this approach is largely based on data mining, we benefit from the 

active research in this field, which now provides fast and scalable algorithms. Hence, we can 

process and analyze large workloads. 

FUTURE TRENDS 



Our strategies are applied on a workload that is extracted from the system during a given 

period of time. We are thus performing static optimization. Future developments in this 

domain (both ours and others) should be dynamic and incremental (Kotidis & Roussopoulos, 

1999). In our case, studies dealing with dynamic or incremental clustering and frequent 

itemset mining may be exploited to update the configuration of indexes and materialized 

views instead of recreating it from scratch. Entropy-based session detection could also be 

beneficial to determine the best moment to periodically run such a strategy. 

In our work, we also only coupled the selection of indexes and materialized views, but the 

current trend in recent commercial systems is to exploit a mix of several optimization 

techniques such as buffering, physical clustering, partitioning, etc. (Agrawal et al., 2004; 

Dageville et al., 2004; Zilio et al., 2004) to achieve the best performance enhancement. We 

also aim at integrating the selection of other optimization structures into our strategy. 

Eventually, a tremendous amount of research is currently in progress to help XML-native 

DBMSs in becoming a credible alternative to XML-compatible, relational DBMSs. The 

majority of XML-native DBMSs indeed present relatively poor performances when the 

volume of data is very large and queries are complex. However, since XML is gaining 

importance for representing business data for analytics (Beyer et al., 2005), it is crucial to 

design automatic ways of guaranteeing the best performance of XML data warehouses. 

CONCLUSION 

The problem of performance optimization has been receiving significant attention since the 

early days of database research. However, each new class of DBMS (hierarchical, network, 

relational, object, XML…) or special purpose of database architecture (such as the decision-

support data warehouses) invariably gives way to the reformulation or adaptation of existing 

techniques, and to brand new issues that require original solutions.  
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TERMS AND DEFINITIONS 

Granularity: The aggregation level within a dimension hierarchy. 

Data cube: Data modeled and viewed in a multidimensional space. 

Data mining: The nontrivial extraction of implicit, previously unknown, and potentially useful 

information from data. 

Index: Physical data structure that allow direct (vs. sequential) access to data. 

Materialized view: Physical data structure that improves data access time by precomputing 

intermediary results. 

On-line analytical processing (OLAP): An approach for processing decision-support, 

analytical queries that are dimensional in nature. 

Workload: Set of queries that are executed over a given database or data warehouse. 

Selectivity:  The portion of accessed tuples which are effectively selected by a query. 


