
Index and Materialized View Selection in Data Warehouses

Kamel Aouiche1(*) and Jérôme Darmont2

1LICEF, Université de Québec à Montréal, Canada

2ERIC, Université Lumière Lyon 2, France

{kamel.aouiche, jerome.darmont}@univ-lyon2.fr

INTRODUCTION

Database Management Systems (DBMSs) require an administrator, whose principal tasks are

data management, both at the logical and physical levels, as well as performance

optimization. With the wide development of databases and data warehouses, minimizing the

administration function is crucial. This function includes the selection of suitable physical

structures to improve system performance.

View materialization and indexing are presumably some of the most effective optimization

techniques adopted in relational implementations of data warehouses. Materialized views are

physical structures that improve data access time by precomputing intermediary results.

Therefore, end-user queries can be efficiently processed through data stored in views and do

not need to access the original data. Indexes are also physical structures that allow direct data

access. They avoid sequential scans and thereby reduce query response time. Nevertheless,

these solutions require additional storage space and entail maintenance overhead. The issue is

then to select an appropriate configuration of materialized views and indexes that minimizes

both query response time and maintenance cost, given a limited storage space. This problem

is NP-hard (Gupta & Mumick, 2005).

The aim of this article is to present an overview of the major families of state-of-the-art index

and materialized view selection methods; and to discuss the issues and future trends in data

warehouse performance optimization. We particularly focus on data mining-based heuristics

we developed to reduce the selection problem complexity and target the most pertinent

candidate indexes and materialized views.

BACKGROUND

Today's commercial relational DBMSs provide integrated tools for automatic physical design.

For a given workload, they automatically recommend configurations of indexes and

materialized views (Dageville et al., 2004), coupled with data partitioning (Agrawal et al.,

2004) or table clustering (Zilio et al., 2004). However, these tools depend on the query

optimizer and therefore the host DBMS, which renders their adaptation onto other systems

intricate. In the remainder of this section, we detail published research about index and

materialized view selection.

Index selection problem

The index selection problem has been studied for many years in databases (Finkelstein et al.,

1988; Chaudhuri et al., 2004), but adaptations to data warehouses are few. In this particular

context, research studies may be clustered into two families: algorithms that optimize

maintenance cost (Labio et al., 1997) and algorithms that optimize query response time. In

both cases, optimization is realized under the storage space constraint. We particularly focus

on the second family of approaches, which may be classified depending on how the set of

candidate indexes and the final configuration of indexes are built.

The set of candidate indexes may be built manually by the administrator, according to his

expertise of the workload (Frank et al., 1992; Choenni et al., 1993a; Choenni et al. 1993b).

This is both subjective and quite hard to achieve when the number of queries is large. In

opposition, candidate indexes may also be extracted automatically through a syntactic

analysis of the workload (Chaudhuri & Narasayya, 1997; Valentin et al., 2000; Golfarelli et

al., 2002).

There are several methods for building the final index configuration from the candidate

indexes. Ascending methods start from an empty set of indexes (Kyu-Young, 1987; Frank et

al., 1992; Choenni et al., 1993b; Chaudhuri & Narasayya, 1997). They increasingly select

indexes minimizing workload cost until it does not decrease anymore. Descending methods

start with the whole set of candidate indexes and prune indexes until workload cost increases

(Kyu-Young, 1987; Choenni et al., 1993a). Classical optimization algorithms have also been

used to solve this problem, such as knapsack resolution (Ip et al., 1983; Gündem, 1999;

Valentin et al., 2000; Feldman & Reouven, 2003) and genetic algorithms (Kratika et al.,

2003).

Materialized view selection problem

The classical papers about materialized view selection in data warehouses introduce a lattice

framework that models and captures ancestor/descendent dependency among aggregate views

in a multidimensional context (Harinarayan et al., 1996; Baralis et al., 1997; Kotidis &

Roussopoulos, 1999; Uchiyama et al., 1999). This lattice is greedily browsed with the help of

cost models to select the best views to materialize. This problem has first been addressed in

one data cube, and then extended to multiple cubes (Shukla et al., 2000). Another theoretical

framework, called the AND-OR view graph, may also be used to capture the relationships

between materialized views (Chan et al., 1999; Theodoratos et al., 2000; Valluri et al., 2002;

Gupta & Mumick, 2005). However, the majority of these solutions are theoretical and not

truly scalable.

Another method decomposes data cubes into an indexed hierarchy of wavelet view elements

and selects those that minimize the average processing cost of the queries defined on the data

cubes (Smith et al., 2004). Similarly, the Dwarf structure (Sismanis et al., 2002) compresses

data cubes, thereby suppressing redundancy to improve maintenance and interrogation costs.

These approaches are very interesting, but they mainly focus on computing efficient data

cubes by changing their physical design, which is not always convenient in practice.

Yet other approaches detect common subexpressions within workload queries that correspond

to intermediary results that are suitable to materialize (Baril & Bellahsene, 2003; Goldstein &

Larson, 2003). However, browsing is very costly and these methods are not truly scalable

with respect to the number of queries.

Finally, the most recent approaches are workload-driven. They syntactically analyze the

workload to enumerate relevant candidate views (Agrawal et al., 2001). By calling the system

query optimizer, they greedily build a configuration of the most pertinent views. A real

workload is indeed considered as a good starting point to predict future queries.

Coupling index and materialized view selection

A few research studies deal with the simultaneous selection of indexes and materialized

views. Agrawal et al. (2001) proposed three alternative approaches. The first, MVFIRST,

selects materialized views first and then indexes. The second, INDFIRST, selects indexes first

and then materialized views. The third, joint enumeration, is claimed by the authors to be the

most efficient for workload execution time optimization. It processes indexes, materialized

views and indexes over these views simultaneously.

Bellatreche et al. (2000) studied the problem of storage space distribution among materialized

views and indexes. A set of views and indexes are selected as an initial solution. Then, this

solution is iteratively modified to reduce the execution cost, by redistributing storage space

among indexes and materialized views.

Finally, Rizzi & Saltarelli (2003) a priori determine a trade-off between the storage spaces

allotted to indexes and materialized views, depending on how queries are defined. Their idea

is that view materialization provides the best benefit for queries involving coarse granularity

aggregations, while indexing provides the best benefit with queries containing attributes with

a high selectivity.

DATA MINING-BASED INDEX AND MATERIALIZED VIEW SELECTION

Strategy overview

We advocate for index and materialized view selection strategies that bear the following

features:

 automatic: the final configuration of indexes and views should be built automatically;

 generic: the selection strategy should not be dependent on a particular DBMS;

 modular: the selection strategy should be composed of independent modules;

 scalable: the strategy must be able to handle large workloads.

To achieve this goal, we designed a new strategy (Aouiche et al., 2005; Aouiche et al., 2006)

that is composed of several modules: a syntactical query analyzer, a data miner, cost models,

and an index and materialized view selector (Figure 1). The query analyzer syntactically

processes the input workload to extract the most pertinent attributes for indexing and view

materialization. It also exploits some knowledge about performance administrative tasks,

formalized as if-then rules. For instance, common rules imply the selection of attributes from

the “Where” and “Group by” clauses in SQL statements. The output of this process is a so-

called “query-attribute” binary matrix whose lines are the analyzed queries and whose

columns are the extracted attributes. The general term of this matrix is set to 1 if an extracted

attribute is present in the corresponding query and to 0 otherwise.

The query-attribute matrix constitutes the extraction context for the data miner. This module

builds a configuration of candidate indexes and materialized views. It may exploit any data

mining technique, suiting the data structure to select (indexes or materialized views). For

instance, our materialized view selection strategy exploits clustering for building sets of

similar queries. The idea of exploiting clustering is motivated by the fact that several queries

having a similar syntax may likely be resolved from one materialized view. Hence, workload

queries are grouped into clusters that are exploited to build the set of candidate views.

Furthermore, these candidate views are merged to resolve multiple queries.

Figure 1: Materialized view and index selection system

Our index selection strategy exploits another data mining technique, frequent itemset mining,

to determine the candidate indexes. Our intuition here is that index utility is strongly

correlated to the usage frequency of the corresponding attributes within a given workload,

which frequent itemset mining is good at highlighting. Each itemset is analyzed to generate a

set of candidate indexes, with the help of metadata (schema: primary keys, foreign keys;

statistics, etc.). This process for building candidate indexes may also be applied on the

candidate materialized views, since they are actually tables. Hence, we can build indexes on

materialized views to maximize performance improvements.

Finally, the cost model module takes as input the data warehouse metadata, the workload and

candidate indexes and materialized views. It computes the cost, in terms of access and storage

cost, of each query in the presence of the candidate indexes and/or views. Since the number of

candidates is generally as high as the input workload is large, it is not feasible to materialize

them all because of storage space constraints. Hence, our cost models are exploited by the

index and view selector to greedily build a final configuration of indexes and materialized

views. When simultaneously selecting indexes and materialized views, we exploit specific

cost models that allow taking into account the interactions between indexes and materialized

views and efficiently sharing storage space.

Discussion

Thanks to its modularity, we have been able to apply our strategy in several cases. For

instance, we performed B-tree index selection in a database context as well as bitmap join

index selection in a data warehouse. In addition, modularity helps in gradually improving our

strategy. A given module may indeed be easily replaced by another, more efficient one. For

example, it is easy to replace our cost models by more accurate ones, or a data mining

algorithm by a more efficient or scalable one.

In opposition to other approaches, particularly those of DBMS vendors, we aimed at

remaining as generic and independent from the host DBMS as possible. Our analyzer module

indeed processes standard SQL queries, for instance. Our cost models are also mathematical

so that they do not depend on a query optimizer. Hence, our strategy may be instantiated

within different systems.

Finally, our approach takes into account knowledge (metadata, usage statistics; knowledge

extracted from the query workload, the way attributes are queried, etc.) that helps in reducing

the selection problem complexity and thus targeting the most pertinent candidate indexes and

materialized views. Since this approach is largely based on data mining, we benefit from the

active research in this field, which now provides fast and scalable algorithms. Hence, we can

process and analyze large workloads.

FUTURE TRENDS

Our strategies are applied on a workload that is extracted from the system during a given

period of time. We are thus performing static optimization. Future developments in this

domain (both ours and others) should be dynamic and incremental (Kotidis & Roussopoulos,

1999). In our case, studies dealing with dynamic or incremental clustering and frequent

itemset mining may be exploited to update the configuration of indexes and materialized

views instead of recreating it from scratch. Entropy-based session detection could also be

beneficial to determine the best moment to periodically run such a strategy.

In our work, we also only coupled the selection of indexes and materialized views, but the

current trend in recent commercial systems is to exploit a mix of several optimization

techniques such as buffering, physical clustering, partitioning, etc. (Agrawal et al., 2004;

Dageville et al., 2004; Zilio et al., 2004) to achieve the best performance enhancement. We

also aim at integrating the selection of other optimization structures into our strategy.

Eventually, a tremendous amount of research is currently in progress to help XML-native

DBMSs in becoming a credible alternative to XML-compatible, relational DBMSs. The

majority of XML-native DBMSs indeed present relatively poor performances when the

volume of data is very large and queries are complex. However, since XML is gaining

importance for representing business data for analytics (Beyer et al., 2005), it is crucial to

design automatic ways of guaranteeing the best performance of XML data warehouses.

CONCLUSION

The problem of performance optimization has been receiving significant attention since the

early days of database research. However, each new class of DBMS (hierarchical, network,

relational, object, XML…) or special purpose of database architecture (such as the decision-

support data warehouses) invariably gives way to the reformulation or adaptation of existing

techniques, and to brand new issues that require original solutions.

REFERENCES

Agrawal, S., Chaudhuri, S., & Narasayya, V. (2001). Materialized view and index selection

tool for Microsoft SQL Server 2000. In ACM SIGMOD International Conference on

Management of Data (SIGMOD 2001), Santa Barbara, USA (p. 608). New York: ACM Press.

Agrawal, S., Chaudhuri, S., Kollàr, L., Marathe, A.P., Narasayya, V.R., & Syamala, M.

(2004). Database Tuning Advisor for Microsoft SQL Server 2005. In 30th International

Conference on Very Large Data Bases (VLDB 2004), Toronto, Canada (pp. 1110-1121). San

Francisco: Morgan Kaufmann.

Aouiche, K., Darmont, J., Boussaïd, O., & Bentayeb, F. (2005). Automatic Selection of

Bitmap Join Indexes in Data Warehouses, In 7th International Conference on Data

Warehousing and Knowledge Discovery (DaWaK 2005), Copenhagen, Denmark: Vol. 3589

of LNCS (pp. 64–73). Berlin: Springer.

Aouiche, K., Jouve, P.E., & Darmont, J. (2006). Clustering-Based Materialized View

Selection in Data Warehouses. In 10th East-European Conference on Advances in Databases

and Information Systems (ADBIS 2006), Thessaloniki, Greece: Vol. 4152 of LNCS (pp. 81-

95). Berlin: Springer.

Baralis, E., Paraboschi, S., & Teniente, E. (1997). Materialized views selection in a

multidimensional database. In 23rd International Conference on Very Large Data Bases

(VLDB 1997), Athens, Greece (pp. 156-165). San Francisco: Morgan Kaufmann.

Baril, X., & Bellahsene, Z. (2003). Selection of materialized views: a cost-based approach. In

15th International Conference on Advanced Information Systems Engineering (CAiSE 2003),

Klagenfurt, Austria: Vol. 2681 of LNCS (pp. 665-680). Berlin: Springer.

Bellatreche, L., Karlapalem, K., & Schneider, M. (2000). On efficient storage space

distribution among materialized views and indices in data warehousing environments. In 9th

International Conference on Information and Knowledge Management (CIKM 2000), Mclean,

USA (pp. 397-404). New York: ACM Press.

Beyer, K.S., Chamberlin, D.D., Colby, L.S., Özcan, F., Pirahesh, H., & Xu, Y. (2005).

Extending XQuery for Analytics. In ACM SIGMOD International Conference on

Management of Data (SIGMOD 2005), Baltimore, USA (pp. 503-514). New York: ACM

Press.

Chan G. K. Y., Li Q., & L. Feng. (1999). Design and selection of materialized views in a data

warehousing environment: a case study. In 2nd ACM international workshop on Data

warehousing and OLAP (DOLAP 1999), Kansas City, USA (pp. 42-47).

Chaudhuri, S., & Narasayya, V.R. (1997). An efficient cost-driven index selection tool for

Microsoft SQL server. In 23rd International Conference on Very Large Data Bases (VLDB

1994), Santiago de Chile, Chile (pp. 146–155). San Francisco: Morgan Kaufmann.

Chaudhuri, S., Datar, M., & Narasayya, V. (2004). Index selection for databases: A hardness

study and a principled heuristic solution. IEEE Transactions on Knowledge and Data

Engineering, 16(11), 1313-1323.

Choenni, S., Blanken, H.M., & Chang, T. (1993a). Index selection in relational databases. In

5th International Conference on Computing and Information (ICCI 1993), Ontario, Canada

(pp. 491-496). Los Alamitos: IEEE Computer Society.

Choenni, S., Blanken, H.M., & Chang, T. (1993b). On the selection of secondary indices in

relational databases. Data Knowledge Engineering, 11(3), 207-238.

Dageville, B., Das, D., Dias, K., Yagoub, K., Zaït, M., & Ziauddin, M. (2004). Automatic

SQL Tuning in Oracle 10g. In 30th International Conference on Very Large Data Bases

(VLDB 2004), Toronto, Canada (pp. 1098-1109). San Francisco: Morgan Kaufmann.

Feldman, Y.A., & Reouven, J. (2003). A knowledge–based approach for index selection in

relational databases. Expert System with Applications, 25(1), 15-37.

Finkelstein, S.J., Schkolnick, M., & Tiberio, P. (1988). Physical database design for relational

databases. ACM Transactions on Database Systems, 13(1), 91-128.

Frank, M.R., Omiecinski, E., & Navathe, S.B. (1992). Adaptive and automated index

selection in RDBMS. In 3rd International Conference on Extending Database Technology,

(EDBT 1992), Vienna, Austria: Vol. 580 of LNCS (pp. 277-292). Berlin: Springer.

Goldstein, J., & Larson, P.A. (2001). Optimizing queries using materialized views: a

practical, scalable solution. In ACM SIGMOD International Conference on Management of

Data (SIGMOD 2001), Santa Barbara, USA (pp. 331-342). New York: ACM Press.

Golfarelli, M., Rizzi, S., & Saltarelli, E. (2002). Index selection for data warehousing. In 4th

International Workshop on Design and Management of Data Warehouses (DMDW 2002),

Toronto, Canada: Vol. 58 of CEUR Workshop Proceedings (pp. 33-42). Aachen: CEUR-

WS.org.

Gündem, T.I. (1999). Near optimal multiple choice index selection for relational databases.

Computers & Mathematics with Applications, 37(2), 111-120.

Gupta, H., & Mumick, I.S. (2005). Selection of views to materialize in a data warehouse.

IEEE Transactions on Knowledge and Data Engineering, 17(1), 24-43.

Harinarayan, V., Rajaraman, A., & Ullman, J.D. (1996). Implementing data cubes efficiently.

In ACM SIGMOD International Conference on Management of Data (SIGMOD 1996),

Montreal, Canada (pp. 205-216). New York: ACM Press.

Ip, M.Y.L., Saxton, L.V., & Raghavan, V.V. (1983). On the selection of an optimal set of

indexes. IEEE Transactions on Software Engineering, 9(2), 135-143.

Kotidis, Y., & Roussopoulos, N. (1999). Dynamat: A dynamic view management system for

data warehouses. In ACM SIGMOD International Conference on Management of Data

(SIGMOD 1999), Philadelphia, USA (pp. 371–382). New York: ACM Press.

Kratika, J., Ljubic, I., & Tosic, D. (2003). A genetic algorithm for the index selection

problem. In Applications of Evolutionary Computing (EvoWorkshops 2003), Essex, UK: Vol.

2611 of LNCS (pp. 281–291). Berlin: Springer.

Kyu-Young, W. (1987). Index Selection in Rational Databases. In Ghosh, S.P., Kambayashi,

Y., & Tanaka, K. (Eds.), Foundation of data organization (pp. 497-500). New York: Plenum

Publishing.

Labio, W., Quass, D., & Adelberg, B. (1997). Physical database design for data warehouses.

In 13th International Conference on Data Engineering (ICDE 1997), Birmingham, UK (pp.

277-288). Los Alamitos: IEEE Computer Society.

Rizzi, S., & Saltarelli, E. (2003). View materialization vs. indexing: Balancing space

constraints in data warehouse design. In 15th International Conference on Advanced

Information Systems Engineering (CAiSE 2003), Klagenfurt, Austria: Vol. 2681 of LNCS

(pp. 502-519). Berlin: Springer.

Shukla, A., Deshpande, P., & Naughton, J.F. (2000). Materialized view selection for multi-

cube data models. In 7th International Conference on Extending Database Technology (EDBT

2000), Konstanz, Germany: Vol. 1777 of LNCS (pp. 269-284). Berlin: Springer

Sismanis, Y., Deligiannakis, A., Roussopoulos, N., & Kotidis, Y. (2002). Dwarf: shrinking

the petacube. In ACM SIGMOD International Conference on Management of Data (SIGMOD

2002), Madison, USA (pp. 464-475). New York: ACM Press.

Smith, J.R., Li, C.S., & Jhingran, A. (2004). A wavelet framework for adapting data cube

views for OLAP. IEEE Transactions on Knowledge and Data Engineering, 16(5), 552-565.

Theodoratos D. & Bouzeghoub M. (2000). A general framework for the view selection

problem for data warehouse design and evolution. In 3rd ACM International Workshop on

Data Warehousing and OLAP (DOLAP 2000), New York, USA (pp. 1-8).

Uchiyama, H., Runapongsa, K., & Teorey, T.J. (1999). A progressive view materialization

algorithm. In 2nd International Workshop on Data Warehousing and OLAP (DOLAP 1999),

Kansas City, USA (pp. 36–41). New York: ACM Press.

Valentin, G., Zuliani, M., Zilio, D., Lohman, G., & Skelley, A. (2000). DB2 advisor: An

optimizer smart enough to recommend its own indexes. In 16th International Conference on

Data Engineering, (ICDE 2000), California, USA (pp. 101-110). Los Alamitos: IEEE

Computer Society.

Valluri, S.R., Vadapalli, S., & Karlapalem, K. (2002). View relevance driven materialized

view selection in data warehousing environment. In 13th Australasian Database Conference

(ADC 2002), Melbourne, Australia (pp. 187-196).

Zilio, D.C., Rao, J., Lightstone, S., Lohman, G.M., Storm, A., Garcia-Arellano, C., & Fadden,

S. (2004). DB2 Design Advisor: Integrated Automatic Physical Database Design. In 30th

International Conference on Very Large Data Bases (VLDB 2004), Toronto, Canada

(pp. 1087-1097). San Francisco: Morgan Kaufmann.

TERMS AND DEFINITIONS

Granularity: The aggregation level within a dimension hierarchy.

Data cube: Data modeled and viewed in a multidimensional space.

Data mining: The nontrivial extraction of implicit, previously unknown, and potentially useful

information from data.

Index: Physical data structure that allow direct (vs. sequential) access to data.

Materialized view: Physical data structure that improves data access time by precomputing

intermediary results.

On-line analytical processing (OLAP): An approach for processing decision-support,

analytical queries that are dimensional in nature.

Workload: Set of queries that are executed over a given database or data warehouse.

Selectivity: The portion of accessed tuples which are effectively selected by a query.

